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ABSTRACT

A fully Sinc-Galerkin method for recovering the spatially varying stiffness parameter

in fourth-order time-dependent problems with fixed and cantilever boundary conditions is

presented. The forward problems are discretized with a sine basis in both the spatial and

temporal domains. This yields an approximate solution which converges exponentially and

is valid on the infinite time interval. When the forward methods are applied to parameter

recovery problems, the resulting inverse problems are ill-posed. Tikhonov regularization is

applied and the resulting minimization problems are solved via a quasi-Newton/trust region

algorithm. The L-curve method is used to determine an appropriate value of the regulariza-

tion parameter. Numerical results which highlight the method are given for problems with

both fixed and cantilever boundary conditions.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1 Introduction

In this paper, a fully Sinc-Galerkin method is introduced for the numerical recovery of mate-

rial parameters in fourth-order time-dependent problems. To illustrate the method, consider

the problem of estimating the spatially varying parameter EI(=) in the state equations

and

c92u 0_( 8'u)£(E/)u = y/_ + _ Sl(x)b-_:, = I(z,0,

_(0,0 = _(1,t) = 0,

OU(o,t) = -_(1, t) = 0,
Oz

_(=,o)= _i I '°"=o)

t>0

t>0

=0, 0<=<1

0<=<I />0

(1.1)

£(EI)u= /(z,t), O< x < l, t > O

(CO'H)u(O,t)= -5(t), EI-_x2 (1,t) = _(t), t > 0

co'u)(I i) = _(0,cou t) -fl(t), c9 Ei__z2_(o, = _ ,

COH

_(x,0) = _/(=,0)= 0, o<=<1

t>O

(1.2)

rt . ._q=l,...,nq _+.given measurements of the data at the points U x_, tq)_=l,...,,p in (0, 1) x These formula-

tions are generalizations of the equations which arise when using the Euler-Bernoulli theory

to model beams with flexural rigidity EI(x) and fixed and cantilever ends, respectively. For

ease of presentation throughout the paper, the boundary conditions in (1.1) and (1.2) will

be referred to as fixed and cantilever conditions with the general _(t) and $(t) included to

allow for boundary controllers.

Since EI(=) denotes the fiexural stiffness, it is physically reasonable to assume that EI

is continuous on [0, 1] and to let the admissible parameter set Q be defined by

Q -- {EI E H'(O, 1): EI(x) > EIo > 0}

(see [9]). With this definition, the existence of a unique solution u to the forward problem

can be obtained on any fixed time interval [0, r], r > O, for f sufficiently smooth.



In order to apply the resultsfrom classicaloperator theory, the inverseproblems corre-

sponding to (1.1) and (1.2) can be written as operator equations of the form IC(EI) = d

where K: iscompact. The procedure for problems with fixed boundary conditions isout-

linedbelow with the formulation for problems with cantileverboundary conditions following

similarly.Further theory for thislattercase can be found in [1].

In formulating the operator equation corresponding to (1.1),itiseasiestto firstconsider

the spatialproblem

(EI(x)u")"-q(x)u = f(:r.), 0 < x < 1

(1.3)
u(0) = u(1) = u'(0) = u'(1) = 0

where El(z) and q(x) are both strictly positive on [0, 11. From the theory of [101 as noted

in [20], there exists a Green's function for (1.3) which will be denoted by G(x,s, EI(s)) to

emphasize its dependence on EI. It follows that G and _/are continuous on [0,1] and that

the state solution u is given by

,_(_)-- a(_,s,E_(_))l(_)e_.

(see [20], pages 205-206).

These one-dimensional results can then be extended to the time-dependent problem (1.1)

via a separation of variables. The substitution of u(x, t) = X(x)T(t) into the homogeneous

problem corresponding to (1.1) yields

and the eigenvalue problem

T"(t) + AT(t) = 0

(EI(_)x"(x))"- ax(x) = 0, 0 < x < 1

X(0) = X(1) = X'(0) = X'(1) = 0

where A > 0. From arguments similar to those in [5] and [20], it follows that since EI(x) > 0

on [0,1], the state solution to (1.1) can be represented by

,_(x,t) = _(_,t,s,E_(_))e_.



The function 9 depends on a Green's function as well as the expansions of T(t) and the forcing

function/. Hence Q is continuous with respect to E1 and o0 is bounded on (0, 1) × (0, r]
8EI

for f sufficiently smooth.

The inverse problem can then be written as the operator equation

K:(EI) = d (1.4)

where d denotes the data. The nonlinear operator K:: H_(0, 1) _ L_((0, 1) × (0, 7]) is defined

by

ZK(EI) = C G(.,.,s, EI(s))ds (1.5)

where the observation operator C maps the state solution into the infinite dimensional ob-

servation space by

C¢(_,t) = {¢(x,t)} ; (1.6)

that is, C samples functions continuously throughout (0, 1) x (0, T]. Note that the choice

L2((0, 1) x (0, _']) for observation space is physically reasonable.

To show that ]C is compact, it is first shown that it is weakly continuous; that is,

Bin -L EI in H2(0,1) implies that _(EI,,) --4 K.(EI) in the L 2 norm. For every (z,t)

in (0,1) × (0, T] it follows that

1 OF
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I'<_ .h4 IEl,(s)- EI(s)lds

< .h4 max ]EI,(s)- Sl(s)l
- ,el0,1]

with the last inequality resulting from the continuity of E1 on [0,1]. Since weak conver-

gence in U2(0, 1) implies uniform convergence, it follows that ](,(El,) converges uniformly

to _.(EI). The weak continuity of K: results from the fact that the uniform norm is stronger

than the L 2 norm. Hence the operator K: as defined in (1.5) is compact since weak continuity

implies compactness.

Although the procedure just outlined was for the problem (1.1), similar results can be

obtained for (1.2) once a Green's function has been found which satisfies the boundary .

conditions. Further theory on problems of this type can be found in [1] and [10].
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Consider now the well-posednessof (1.4). First, since _ is continuous, the range of

the operator /C lies in C((0, 1) x (0, r]) for any EI __ Q. Hence there exist elements

d E L2((0,1) x (0, r]) for which (1.4) has no solution. Furthermore, since/C is a compact

operator with an infinite dimensional range, it follows that the Moore-Penrose generalized

inverse )Ut is discontinuous. This in turn indicates that small perturbations in the data d

may give rise to arbitrarily large perturbations in the solution El E Q. Consequently, some

sort of regularization (i.e., stabilization) is required to obtain an accurate approximation for

EI.

The regularization technique that is used is Tikhonov regularization [24], and the problem

(1.4) is replaced by the minimization problem

where

rain 7"_(EI) (1.7)
EIEQ

1

T_( EI) - _{[IlC(EI) - dll" + aY( EI) }.

Here a > 0 is a regularization parameter which controls the tradeoff between goodness of fit

to the data and stability. The penalty functional fl(EI) provldcs stability and allows the

inclusion of a priori information about the true parameter EI. Since EI is assumed to be

"smooth" in the sense that EI E H2(O, 1), the penalty functional is taken to be the norm

/01 /:J(EI)- lIE/I[_ __ + e [El(x)]'d_. (1.8)

with e of order 10 -s. The reasons for including the second term and forcing J to be strictly

positive will be discussed in the fourth section of the paper. By using arguments similar to

those in [7] and [16] and assuming that ]C(EI) is one to one, it can be shown that with this

definition for J(EI), the solutions EI.. to (1.7) converge as the regularlzation parameter

_ _ 0 and as the perturbations in the data and operator tend to zero.

Due to the infinite dimensionality of Q and that of the state space, the problem (1.7) is an

infinite dimensional minimization problem. In order to develop a practical numerical scheme,

the problem must be replaced by a sequence of finite dimensional problems; that is, one

must approximate the operator JC and minimize the functional T_ over a finite dimensional

admissible subspace of Q.



The evaluation of)C(El) requires the solution of the partial differential equations (PDE's)

(1.1) or (1.2). Similar PDE's must be solved to obtain the components of the derivative

KT(EI). The construction of an approximate solution to these forward problems commonly

begins with a Galerkin discretization of the spatial variable with time-dependent coefficients.

This yields a system of ordinary differential equations which is solved via differencing tech-

niques. Due to stability constraints on the discrete evolution operator, low order methods

with small time steps are often required to obtain accurate approximations. Moreover, this

time-stepplng must be repeated at each step in the minimization of (1.7). A final difficulty

lies in the need to interpolate at data points which do not coincide with the nodes of the

ODE solver.

In contrast, the method of this work implements a Galerkin scheme in time as well as

space. This method thus bypasses many of the difficulties associated with time-stepping

methods in the context of inverse problems. Corresponding results for the heat equation can

be found in [12] and [19].

The fully Sinc-Galerkin method in space and time has many salient features due both

to the properties of the basis functions and the manner in which the problem is discretized.

Perhaps the most distinctive feature of the method is the resulting exponential convergence

rate when solving the corresponding forward problems. Furthermore, the judicious choice

of a eonformal map provides approximate solutions which are valid on the infinite time

interval rather than only on a truncated time domain. Finally, the discrete system requires

no numerical integrations to fill either the coefficient matrices or the right-hand side matrix.

All three features prove to be advantageous when solving the forward problems and hence

the inverse problem.

The foundations of the Sinc-Galerkin method are described in Section 2. The fundamental

quadrature rules are given, and the exponential convergence rate of this method is stated.

A thorough review of sinc function properties can be found in [22] and [23].

In the third section, the Sinc-Galerkin systems for the forward problems are constructed

and implementation details are discussed. The section includes the outline of a very robust

and accurate algorithm for solving the resulting matrix systems.

Section 4 includes the finite dimensional minimization problem with the discussion cen-



tering around the construction of the various components of the Tikhonov functional. The

resulting unconstrained optimization problems are solved via a quasi-Newton/trust region

algorithm as described in [2] and [8].

Numerical results are presented in Section 5. Of the many examples tested, those dis-

cussed in this section best exhibit the features necessary for the practical implementation

of the method. A brief discussion of the L-curve technique [6] for determining the regular-

ization parameter c_ is given at the beginning of the section, and the applicability of this

technique in conjunction with the Sinc-Oalerkin method is demonstrated by the numerical

results. Finally, results are included both from data sets with white noise and from data sets

to which no noise was added. As shown in these examples, the Sinc-Oalerkin method works

equally well in both cases.

2 Sinc Function Properties

For the Sinc-Galerkin method, the basis functions are derived from the Whittaker cardinal

(sinc) function

and it translates

sin(Trx)
•i,_c(z)- --, -o_ < _ < _o (2.1)

For h* = 4' three adjacent members of this sinc family (S(k,h*)(m),k = -1,0,1) are shown

in Figure 1.
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To construct basis functions on the intervals (0,1) and (0, oo), respectively consider the

conformal maps

and

(2.2)

T(,o) = t.(w). (2.3)

The map _b carries the eye-shaped region

( I( )1D_= z=x+iy: arg

onto the infinite strip

i}

Ds = {_ = _ + it/: I_1< a <___},

Similarly, the map T carries the infinite wedge

t + is: larg(w)l < a < _}Dw

onto the strip Ds. These regions are depicted in Figure 2.

(2.5)

(2._)
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Figure 2. The Domains Ds, DE, and Dw.

The sinc gridpoints zk E (0, 1) in DE will be denoted zk since they are real. Similarly, the

gridpoints wk E (0, oo) in Dw will be denoted t_. Both are inverse images of the equispaced

grid in Ds; that is,

and

e kh

zk = ¢-l(kh) = 1 + e kh (2.7)

= T-1(kh) = e (2.8)

To simplify notation throughout the remainder of this section, the pairs ¢, DE and T, Dw -

are referred to generically as X, D. It is understood that the subsequent definition, theorems, -

and identities hold in either setting. Furthermore, the inverse of X is denoted by 4).

The important class of functions for sinc interpolation and quadrature is denoted B(D)

and defined next.



Definition 2.1. Let B(D) be the class of functions F which are analytic in D, satis_

[ IFC_)d_l_ 0, t _ +co
.tO (,+'d

where L = {is: Isl < d < _}, and on the boundary 4 D (denotea OD) satisfy

N(F) =_ [ IF(z)dz[ < co.
J8 D

The following theorem for functions in B(D) is found in [21].

Theorem 2.1. Let F be (0,1) or (O, oo) when X = ¢ or T, respectively. If F 6 B(D) and

zj --¢(jh) = X-a(jh), j = O, +1,+2,..., then for h > 0 sufficiently small

F(z)ez - h ___ <__gl_ -'-'d/_. (2.9)

Theorem 2.1 illustrates the exponential convergence rate which is a trademark of the sinc

methods. There is a common occasion when it is possible to evaluate the infinite series

appearing in (2.9), namely when integrating against S(k, h) o X. In general, however, the

series must be truncated. With additional hypotheses, it is proven in [11] and [22] that the

truncation need not be at the expense of the exponential convergence.

Theorem 2.2. Assume F 6 B(D) and that there ezist positive constants K,c_, and _ such

that
f

K _ e-al×Cr)l' r 6 ¢((-o%0))<

[ e-_l_c-),,_ e ¢([0,_)).

I F(_')

x'(_)

Then for h sufficiently small

(2.1o)

F(z)dz - h _ < K1 + + •j:_. - (2.11)

Theorems 2.1 and 2.2 are used to establisha uniform error bound when constructing an

approximate solution to the forward fourth-order time-dependent problems. The application

of these quadrature theorems is facilitatedby the identities

={1, i=p
O, i_p,

(2.12)



and

]1 {° ':'6_)-- h SCv,h)o×(z) =

71.2
 ,_h2 i 3

= (-2)(-1)'-, i # r,
"--" (i_ v)_ '

d 3

={ 0,!._ 7r2( i P)_], i=Pit1)'------_[6_v)_- _ :v;

(2.13)

(2.14)

(2.15)

_r 4
]1 '--" (216,

-_X4S(p'h)°X(z) ,=z, = -4(-1)'-J'[6- 7r'(i-p)'], i_p
(i-p)'

which denote the evaluation at the gridpolnt zl of the slnc-map compositions and their

derivatives with respect to the map X.

3 The Forward Problem

Two forward problems of interest are

0 2u. 0_ ( O_u )c.(_,t) = -_(_,t) + _ ZI(_)_-_(_,t)

u(O, t) = u(1, t) = O,

Ou
Ou t) _(1,t) O,_(0, = =

u(z, O)= .__(,Oux O)

= f(x,t),

t>O

t>O

=0, O_<x_<l

O<z<l t>O

(3.1)
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and

£u(z,t)=f(x,t), 0<x<l, t>0

(°_)(1,t)=,(t), _>0u(0,t) = _(t), EI-_yx2

( 0'U)(a t)=6(t), t>0_(o,°_t) = _(t), _° E1b__=_ ,

_(z, O) = Ou-bq-(_,o)= o, o_<__<I.

(3.2)

Since a thorough derivation of the Sinc-Oalerkin method for problems of this type is

given in [18], the following discussion contains only that material which is needed for the

construction of the associated matrix systems.

To define the Sinc-Oalerkin approximation to (3.1), let Si(z) - S(i,h,) o ¢(z) and

r n lj=-Me,...,Nts;(t)- S(j,h,)oT(t),andtakethebasistobe"_o,J,',---M.,...,N.where

s,j(_,t) - s,(,)s;(t).

The approximate solution is then defined by way of the tensor product expansion

_¢. _rt m_ = M_ + N, + I

u,,_.,,,_,(:e,t)= _ _ uljSij(m,t), (3.3 /
i=- Ma j=- M¢

mt= Mt + Nt + l.

The m, .ms unknown coefficients {uii} are determined by orthogonalizing the residual with

respect to the set of sinc functions {SnS_Xq=-_r'""'mJp=-M.,...,1¢." This yields the discrete Galerkin

system

(CUm.m,-- /,S_S_) = O (3.4)

for p = -M,,...,N_ and q = -Mt,...,N,. The inner product (.,.) is taken to be

with the weight

fifo'(F,G) = F(z,t)G(x,t)w(z,t)dzdt

_0(_,_)= _o(:)_'(t) = (¢'(_))-_('t(t))-_.

(3.5)

(3.6)

11



The expressions (3.1), (3.4), and (3.5) are combined to form the system

1 2
t too 0 * * d

_(_.,._,,(=,O)s,(=)s_(o_(=)_ (t)d= t.Io Jo

,o,( o. )+ ]o_/o _ EI(=)-E_=_""""(='t) S,(=)S;(O_(=)_'(Od=d* (3.7)

=/o _ ]o'/(=,OS,(=)S;(t)_(=>'(Od=d_

for p = -M,,...,N, and q = -Mt,...,Nl.

In anticipation of the parameter identification problem which motivates this analysis, the

term EI(z) in (3.7) is expanded as a linear combination of weighted sinc functions with four

Hermite-like algebraic terms added to accommodate the potentially nonzero function and

derivative values of EI at z = 0 and z = 1. Specifically, this parameter basis is taken to be

hrm
{¢k}_=-M. with

b_,.(=),

b_u.+,(=),

¢',(=)= ,E(=)&(=),

bN._,(=),

b,,,.(=),

k _ --M z

k = -M= + 1

k =-M. +2,...

I¢= N,,- I

A--N,,.

,N.-2 (3.8)

Here &(x) = S(k,h,) o ¢(z) and the basis weight function vE is

vE,(z) = w(z) = [=(1 - x)]}. (3.9)

The algebraic boundary basis functions are given by

and

b_Mo+x(z)= (1 -- x)u[2z4-1],

b,,,._,(=)= ='[2(1-- =)+ 11,

b_,.(=) = =(1--=)',

bN,,(=) = -(1 - z)z'.

12



The finite dimensional approximation of E1 then takes the form

Nm

El.,.(m)= _ c,¢k(m) (3.10)
k=-Mj

where the choices Ms = M= and Ns - Nffi are made so as to guarantee a square spatial

coefficient matrix. In the forward problem, the coefficients Nj{ck}k=_M_ are known whereas in

the corresponding parameter recovery problem, they are unknown and are determined via

methods to be discussed in Section 4.

A quick note should be made concerning the choice of parameter basis and the manner

of expanding Elm,. The two derivative-interpolating boundary basis functions are added

so that this expansion of EI_ is the same as that used with cantilever or free boundary

conditions. The choice of (3.9) for basis weight is certainly sufficient and proves to be

beneficial when incorporating this forward scheme into a numerical method for solving the

parameter recovery problem as described in Section 4.

The expansion (3.10) is substituted into (3.7), and integration by parts is used to transfer

the derivatives onto the product SpwS_w'. As detailed in [18], the weight choice (3.6) guar-

antees that all boundary terms vanish. The resulting integrals are evaluated via Theorem 2.2,

or when possible, Theorem 2.1. The requirement

I£Z(z)u(x,/)1 _< Kx_+](1 _ z)B+]t'v+It -s

where the "homogeneous" part of E1 is

£Z(m) = EI(m)- EI(O)b_M.+I(x)- EI(1)bN._,(m)- EI'(O)b_M.(x)- EI'(1)bsv.(m), (3.11)

guarantees the decay needed to truncate the infinite quadrature rule as specified by (2.10).

With ct, fl,_, and g specified and M, chosen, the choices

h. = _r_.a--_ffi, (3.12)

(3.13)

(3.14)

ht = h,,

U.'Y
(3.15)

13



and

N, = -_M, + I

for the stepsizes and summation limits balance the asymptotic errors to at least order

0 (eI-'a"M°)_ / . This rate results from the presence of a sine function in the integral. In the

above expressions, [.] denotes the greatest integer function. Note that the +1 is unnecessary

a aM_when _M_, _ z, or _M_ are integers.

In many time-dependent problems, the solution decays exponentially at infinity; that is,

the solution satisfies

t)l _ Kx_+_(1 - x)_+]t'_+½e -s'. (3.17)

With this supposition, Lund [11] shows that the condition (3.16) can be replaced by

N,=[_ln(_M,h,)+X]. (3.18)

The selection Nt in (3.18) significantly reduces the size of the discrete system with no loss

of accuracy.

Given M,. N,_, Mr, Nt and h = h. = ht as defined above, the discrete system for (3.1) is

A(EI)UCrt + C®UArt = G. (3.19)

Here

and

where V(r/) denotes the diagonal matrix with entries r/(Z_M.),." .,r/(xN.).

:matrices U and F are defined componentwise by

(3.22)

The m= ×mt

[U]q = uij

and

IF]J1 = f(xi, tj).

14



It should be noted that the ordering of the coefficients uij in U mimics that used in most

standard time-differencing schemes. This is a matter of convenience since the Sinc-Oalerkin

method is not bound by any specific ordering of the grid.

To simplity notation when specifying the spatial and temporal matrices A(EI) and As

respectively, let i(t), t = 0,1,2,3,4 denote the matrices whose pi-th entry is 6_ ) from

(2.12) - (2.16). As shown in [13], the mtx ms matrix As is given by

A, = [ _-_tI(') - I I(°)] :D((T)½ ). (3.23)

The m= x m= matrix A(EI) has the form

A(EI) = [@(2):D(/_'#(,)) + 2@(a):D(_7_(,)) + @(4):D(i_(0))]. (3.24)

The notation _(_7_(e)), t = 0, 1,2 denotes the diagonal matrices containing the components

of the vectors

where g = [C-M.,

componentwise by

• • • , CN=] T.

/7_(,) = ¢/(t)E, I = 0, 1,2 (3.25)

The matrices _(J), j = 2, 3, 4 and _(l), l = 0, 1, 2 are defined

1

_ (3.26)

and

[@(t)]i k = ¢(')(z,). (3.27)

with the notation on the right-hand sides of (3.26) and (3.27) indicating the j-th and t-th

derivatives, respectively.

To illustrate the dependence of q_(i), j = 2,3,4 and q/(t), l = 0, 1,2 on fundamental

matrices, the respective expansions are listed below. The diagonal matrices T) and the

matrices I (l), l = 0, 1, 2, 3, 4 have sizes consistent with the following range of indices i,p,

and k (-M= < i < N=, -M= < p _< N=, -M® + 2 _< k < N= - 2). From (3.26) it follows that

15



and

+11(1)79 3w"+ 3w' + + 1(°)79h.

_iIC3)D 6w_'_b")

+ IO)D 6w"¢ _ + 12wt¢ ''+ 4w¢'"+ 3w

+11(1)79h= 4w'" + ow --_ + + wT)

(w,,,h
+](°)v \ ¢,'j

For t = 0, 1,2 the m= × m_ matrices in (3.27) are given by

(3.28)

(3.29)

(3.30)

: u Nm-1 N.J
(3.31)

where g(t) = [b(t)(z_M.),..., bil)(;gNe)]T for k -- -M,,-M_ + 1, N,- 1 and N,. Again, the

superscript t indicates the Lth derivative. The m, x (m, - 4) matrices B (t) are

and

B c°) = :D(vE)I c°), (3.32)

B (1) =-1D(vE_b')I0) + D(vE)I (°) (3.33)

79 v" I (°)

The negative signs that appear in the definitions of B 0) and B (_) result from the transposing

of 1 (1). Again, it is noted that in (3.32) - (3.34), the rn® × (ra® - 4) matrices l(t),£ = O, 1, 2

have components _ht) as defined in (2.12)- (2.14).

Various methods exist for solving matrix systems of the form (3.19), one of which derives

from the generalized Schur decomposition (page 396 of [4]). As guaranteed by the results of

Moler and Stewart [15], there exist unitary matrices Q_, Z1, Q2 and Z2 such that
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Q*xA_ZI = P

* ZQ1C_ , = R

Q2CtZ2 = S

* ZQ2A_ 2 = T

where P, R, S, and T are upper triangular. If Y = Z;UZ2 and C = Q_GQ_, then (3.19)

transforms to

PYT" + RYS" = C.

By comparing the k-th columns, one finds that

P _ tkjyi + R y:_ s_jyi = ck
1=_ j=k

which yields
n Ti

(tkkP + s_p,R)yk = ck - P _ tkiYi - R __, skiYi (3.35)
i=k+l .i=k+l

(for convenience, it is assumed that aU matrices are n x n and indexed from 1 to n). With

the assumption that the matrix (tkkP + skkR) is nonsingular, the solution to (3.35) is easily

found by recursively solving triangular systems.

Although this algorithm does require complex algebra, it is both robust and efficient

and requires no assumptions concerning the diagonalizability of the component matrices.

It should be noted that a "real" version of this algorithm also exists [3]. In this latter

algorithm, Q1,Z1,Q2, and Z_ are orthogonal with P,S quasi-upper triangular and R,T

upper triangular.

A Sinc-Galerkin method for the more general problem (3.2) can be developed in a similar

manner once a suitable basis has been determined for discretizing the spatial variable. To
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=

ft lNe+ 4
this end, define the set of spatial basis function l_iI_=-M.-4 by

B_u._,(x),

B_u._3(z),

e_u._,(z),

e_u._1(x),

_(_)S,(x),

BN.+,(x),

B_.+2(_),

B_r.+3(z),

B#.+,(_),

, = -M. -4

, = -Mr - 3

, = -M. - 2

s = -M. - 1

= -Mzl " " "

=N.+I

= N_: +2

=N.+3

= N.+4.

,N.

Here Si(z)- S(i,h=)o ¢(x) and the basis weight v(x)is taken to be

The boundary basis functions are

_,(_)= [_(i- _)]3.

B-M.-I(z) = (1 -- z)'[20z 3 + 10z 2 + 4z + 1],

and

BNo+I(z) = z4120(1 -- z) 3 + 10(1 -- z) 2 + 4(1 -- z) + 1],

B_M._2(z) = x(1 - z)4[10z 2 + 4z + 1],

BN.+2(z) = --x4(1 -- x)[10(1 -- z) _ + 4(1 -- x) + 1],

B-M._3(x) = x'(I -- z)4 [2x + I] ,

B,,.+_(_)= x'(1 - _)' [2(1- _) + _],

B_M._4(x) = lx3(1 - z)',
O

1 4

BN.+4(z) = -_z (I - x)3.

(3.36)

(3.37)
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A brief note concerning the choice of spatial basis is in order at this point. First, since

e¢') [S(i,h,) o ¢(m)] , l 1,2,... are undefined at = = 0 and x = 1, some basis modifica-dz--TO" ---- '

tions must be made when solving problems with nonzero boundary conditions (see also the

definition of Ck in (3.8)). With the cantilever boundary conditions of (3.2), it is tempting to

use fewer algebraic boundary basis functions and the basis weight

_(=) = =(1 - =) 3

but in many problems this results in nonzero boundary terms when integrating by parts.

By using the symmetric basis weight v(=) = [=(1 - =)]3 and a full complement of algebraic

terms, this pitfall can be avoided. Furthermore, the spatial basis {_} as defined in (3.86)

can be used for problems with free boundary conditions, thus providing consistency to the

method.

The basis for the problem (3.2) is then taken to be {_S_} with S_(t) = S(j, ht) o T(t),

and the approximate solution is defined to be

g. N,

_,.....,(m,O = _ 5?. _,,/,(=)s,(o
i=- M, j=-M,

Nt

+ _ s;(t)b,-,,.-3._C-,,r.-3(=)+ _,-M.-,,,C-_.-,(=)
j=-M,

+{_(t)C__.__(=)+ _(_)C-_.-_(=)+ _(OCN.+3(=)+ $(t)C_.+,(=)}

where

and

1

_(t)- EZ(1)5(0

6(t)-- E/_l)6(t)- EI'(1) ..[E/(1)]_5(t)"

(3.38)

The functions $(t) and $(t) are well-defined since El(m) is assumed positive on [0,1]. It

should be noted that the approximate solution does satisfy the boundary conditions in (3.2).

The (m, + 4). rnt unknowns {uq} in (3.38) are determined by orthogonalizing the resid-

. q=-M,,...,N,
ual with respect to the sinc functions {Sp(=)Sq(g))p=_M._2,...,N.+ 2- This Petrov-Oalerkin

approach is in contrast to those Galerkin methods in which the residual is orthogonalized
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with respect to the basis and is done to take advantage of the exponential accuracy of point

evaluation in the quadrature. This yields the discrete system

-M=-2_<p___ N,+2

(_,,....., - /,s_s;) = o,
-Mt <_ q __ Nt

where(.,-) is de_nedin (3.S)with_(=,0 = (T(t))-½.

Appropriate integration by parts and application of the sinc quadrature rules) as discussed

in [18], yields the matrix equation

A(EI)UC T + C=MUA T = a (3.39)

where C,, C,, and A, are defined in (3.20), (3.21), and (3.23) respectively, and

The (m. + 4) × m= matrices U and _ are defined componentwise by

and

y(.,t) ---

where

[Ul,j= u,j

[_],j = y(=,, t_)

f(=,t)- c(a(t)B_u._,(=))- C(B(t)B_,.,._,(=))

-£.(_f(t)Btc.+a(=))-£((_(t)B,v.+,(z)).

The (m= + 4) x (m= + 4) matrix M has the form

M -- bb2

I

i0

_,a I DM

i 0

i

I

I

I

I

where the m= x m= submatrix DM and the (m= + 4) x 1 vectors are given by

Du = z,(_,),

2O



- )fbL2 = 79( B__._4 ,

_L_= V(B_u.__)f,

_,, = V(BN.+I)f

and

b.2= 79(BN.+2)f.

Here f is simply an (m, + 4) × 1 vector of ones.

The spatial matrix A(EI) can be constructed as follows. Let q'(J), g2(t) and/_¢z) be defined

as they were in (3.26), (3.27), and (3.25), respectively (with l = 0,1,2 and j = 2,3,4). Note

that in the definitions now, the index ranges are -M, < i < N,,-M,-2 _< p _< N_+2, and

-M,-2 _< k _< N,+2, and the (m. +4) × 1 coemcient vector is now E= [C-Mo-2,"', cn.+_] T.

Hence _I'(i), @(t) and ff,_¢o have the sizes (m_ + 4) × m_, m_ × (mr + 4) and m= × 1, respectively.

Furthermore, let _'" denote the (rex + 4) x mx matrix which is defined componentwise by

1

[_"]_ - ¢'C_)(S_°)"(_)

and let _ = [C_M.,"" ,CNo] T. Finally, fori = -M,,-4, •. •, -M,,-1 andi = N,,+I,..., Nffi+4,

let _ denote the (mffi + 4) x 1 vectors

w B" " .

Here

EXcCx)- c_M._,b_u._lCx)+ c__,._2b_M.__(_)+ cN.+,b,,.+l(_)+ cN.+,_,,.+_(_)

and i" is simply the m, x 1 vector of ones. The (m, + 4) x (m, + 4) matrix A(EI) is then

A(EI) = [g-N,-, i g-M.-a i A,_ i gt¢.+, " gN.+2] (3.40)

where the (m= + 4) x m= submatrix Am is given by

It should be noted that the coefficient matrix A(EI) in (3.40) differs from that arising

in the fixed boundary problem, (3.24), only in the presence of the diagonal multipliers 79(v)
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and the addition of border vectors. Hencethe method is easily adapted when changingthe

boundary conditions. Furthermore, the matrices q_(D, _" and @(t) can be expanded in terms

of fundamental matrices in a manner similar to that in (3.28) - (3.34), thus simplifying the

implementation of the method.

With A(EI), At, C,, Or, M, and G thus specified, the system (3.39) can be solved via the

generalized Schur algorithm (3.35).

The final implementation issue for the forward problem (3.2) concerns the choice of decay

parameters ct,/_, 7, and 6. As discussed in [18], the weight choice w(z, t) = ('I'(t))-_ yields

the decay condition

IEZ(_)u(x, t)l ___x_+3(1- z)a+3t'+½e -st (3.41)

where E2"(z) is defined in (3.11) and H(z,t) is that part of the true solution which is ap-

proximated by
N. Nt

ira- M,, j=-Mt

(this can be formally obtained by subtracting all boundary contributions from the true

solutionu(s, t)).With the decay parameters specifiedand M, chosen, the remaining stepsizes

and summation limitsare given by (3.12)- (3.16).

4 The Finite Dimensional Minimization Problem

As noted in the introduction, the minimization problem

where

min 7"_,(EI)
EIEQ

T,,(EX) = 12{llx:CEz)_ dll2+ _IIEIII_}

is infinite dimensional and thus must be replaced by a sequence of finite dimensional problems

before a viable numerical scheme can be developed. Following from (3.10), the approximating

admissible parameter sets are taken to be

ms = Ms+ Ns+ I
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with the basis {¢k) defined in (3.8). The summation limits depend on the boundary condi-

tions with ME = Mx, ArE = N= for fixed boundary conditions and ME = M,+2, ArE = N=+2

for cantilever boundary conditions. The associated finite dimensional optimization problem

can then be formulated as

min T,.(EI,,,.) (4.1)
Elm B EQ,,_ m

where

1

- - dl[ 2+  IIEI .II }. (4.2)

Note that in solving the minimization problem (4.1),one is actually solving for the vector

_"= [c_uj,,.-.,cNm]r E _J' which minimizes Ta.

With nl,and nq specifying the number of spatialmad temporal observation points, re-

spectively,the approximation _(EI,,_,) :_P'_ _ _'_"_ to IC(EI) isobtained by applying

a discrete analogue of the observation operator C in (1.6) to u,_.m, in (3.3) or (3.38). If the

set of observation points {(zv,Q))_-_:;;;;__ can be represented as a tensor product of spatial

and temporal points, then K(EI_s) has the representation

.----.t

K(EI,,_.) = C co(U) (4.3)

where the matrix U solveseither(3.19)or (3.39)depending on the boundary conditions.For
..-..@

the fixed boundary problem (3.1),the matrix concatenation co(U) is the vector in ]/_""_'

which isobtained by successivelystacking the columns of the ra= × ra_ matrix U. C is an

(nj,.nq)× (m= .mr) evaluation matrix which can be formulated as follows.Define the np× raft

spatialevaluation matrix E= to have components

[E=]p,,=S,(xp), 1 __p __np, -M= < i <ZN..

and let the nq x rat temporal evaluation matrix Et have the components

[Et]q,i= S_(Q), l <_ q S nq, -M_<jSN_.

Then

C = Et ® Effi.

Similar formulations for C and co(U) can be used if the cantilever boundary value problem

is being considered. It is noted that if the set of observation points is not rectangular as
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describedabove, then point evaluation can be done directly via (3.3) or (3.38). This latter

option is less efficient, however, than that defined in (4.3).

The discrete penalty functional IIEI,,,,II_ is formed by substituting the expansion (3.10)

into the definition (1.8). This yields

IIES.,,llb ' "= io + jo'tESm.( )l'd [
_TQg

where the mE × mE matrix Q = Qd + Q! has components

L'
and

1[Qsl_t_ ¢_(_)¢t(z)d_, -Ms < k,t <__Ns.

The matrix entries are approximations in the sense that sinc quadrature rules are used to

evaluate many of the integrals.

For the choice of basis functions in (3.8), the matrix qa is given by

Qd -----

4 6 O' -6 2

6 12 O' -12 6

-6 -12 6" 12 -6

2 6 O' -6 4

Integration by parts and the application of the sinc quadrature formula (2.11) yields the

(mE -- 4) X (mS -- 4) submatrix

_j Ii( @ 5 1 l(1)+ i_i(o)= h_. _ h;

where again, I (0, t = 0, 2, 4, denote the matrices whose pi-th entries are 6(_) from (2.12),

(2.14), and (2.16), respectively. The zeroing of all other quadrature terror is a result of the

choice vs(z) = (_'(z))-t = [z(1 - z)]t. The notation 0 simply denotes a zero vector of

length ms - 4. Because 1 (4) is positive definite and I (') is negative definite (see [17]), the
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matrix Qa is nonnegative definite with zero eigenvalues resulting from the configuration of

the outer four columns.

Here

Direct integration and sinc quadrature are used to obtain the matrix

1 11 _-'*T 13 -1
I05 210 t/12 420 140

210 35 '/£1 70 420

^

13 9 '-*T 13 11
420 70 q rl 3-"5 12--'0

-1 13 --'T 11 1
140 420 q r2 120 105

25

[q',2]h = -h.(l - zh)2=_,

for k = -ME + 2,..., Nm - 2. The matrix QI is strictly positive definite.

Although the matrix Q is full, it is very efficient to construct since the Toeplitz matrices

if0), i(_) and IO) are also needed in the forward solver. For e > 0, Q is symmetric and positive

definite and hence has a Cholesky decomposition Q = RrR where R is upper triangular. It

then follows that the penalty term IIEI,,,_ll_ yields the quadratic form

_.rRrm.= iiRe.ii2 (4.4)

where ]l" H denotes the Euclidean norm. This representation for the penalty functional is

particularly useful both when implementing a scheme to solve the minimization problem and

when plotting the L-curve to determine a suitable regularization parameter a (see [6]).

and

= 1 - x)

where 7)(7/) denotes the diagonal matrix with entries _7(Z-M.+2)," ", T/(ZNm-2). Recall that

the sinc gridpoints are defined in (2.7). The vectors _1, $_, O'rl and q'_2 have components

[4h]_ = h, zk(1 - =k)3[2ak + i],

[_,]_ = h=(1 - zl,)z_[2(1- zk) + 1],

= - .



To highlight the dependence of the functional T.. in (4.2) on

_'= [C_M., ..., cN.] z, let
,-,..¢

KCe') - _(g1,,,.) = C _oCU(e))

where U(_') solves either (3.19) or (3.39) for a given expansion EIm.(z)=

Noting (4.4), the optimization problem (4.1) can be replaced by

where

the unknown vector

Nm

:E
k=-Mm

min T.(e) (4.5)

1

T_(g) = _{IIK(_') - JIl' + _llm'll_} • (4.6)

To obtain a minimizer for the nonlinear functional T_.(5"), a quasi-Newton/trust region iter-

ation [2]

gk+l = e'k+ _'k

is used. Here s'k solves the quadratic programming problem

min 1,_=. _ {llg(g_) + g'(e'_)_- dtl2+ _IIR(g_+ _)112}

subject to [[_*[[ <_ Gk with g'(_'k) denoting the Jacobian of g at _'k. The trust region radius

5k is chosen so that T,,(_') has sufficient decrease at each iteration to guarantee convergence

to a local minimizer of T,, (for further details about the theory and implementation of the

trust region algorithm, see [2] or [8]). An important numerical issue in the implementation

of the trust region scheme is the formulation of the derivative of the operator K. Here the

derivative, or Jacobian, is an (n v • nq) x m_ matrix whose y-th column is given by

1 _,
[g'(_')],, = 7"--.01im-_[K(c + T$,,) - g(_*)]

where the standard unit vector _,, has components

$_k= / 1 ilk=v, -Mg_<k<NE[_]_
L0 otherwise.

In the examples of the next section, the Jacobians were calculated with a standard forward

difference scheme. This scheme is easy to implement and accurate enough for the purposes

of the method. If further efficiency is desired, a directional derivative scheme such as that

described in [12] can be used.
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5 Implementation and Numerical Examples

The four examples reported in this section were selected from a large collection of problems

to which the Sinc-Galerkin method was applied. The results are representative of those

obtained for other problems.

The first example demonstrates the application of the Sinc-Galerkin method to a model

problem with fixed boundary conditions in which the state solution was sampled directly;

that is, no external noise was added to the data. To demonstrate the feasibility of the method

for problems with noisy data, the same problem is revisited in Example 5.2 but with pseudo-

random white noise added to the data. In the third example, the parameter to be recovered

is the shifted Gaussian function that was discussed for second-order examples in [12] and [19].

Again, pseudo-random white noise is added to the data. The final example demonstrates

the application of the method to a problem with cantilever boundary conditions as modeled

by (1.2). Hence in this example, the parameter EI appears both in the spatial operator and

in the boundary conditions.

In all examples, d = -_ (see (2.4) and (2.6)). The errors for the method are reported on

the set of uniform gridpoints

tr = (5.1)

zk =kl, k=0,1,...,100

with stepsize l 1 With E1 and Elrnj denoting the true and approximate parameters-- _-_.

respectively, the errors are reported as

IIEv(t)ll = max EI,,,,(zk)l. (5.2)
O_k__lO0

The error results are tabulated in the form .aaa - ? which represents .aaa x 10 -_ and all

problems were run with sixteen place accuracy on a Vax 8550.

A very important practical consideration is the choice of the regularization parameter a

for a given (error-contaminated) data set. If the error in the data is discrete and random_

then under certain conditions the method of Generalized Cross Validation (GCV) can be used

to determine a suitable value of o_ [25]. A second method for determining the regularization
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parameter is to plot the norm of the penalty functional, IIRc_ll, versus the norm of the

residual, [IK(g_) -dll (see [6] or [14]). Here g,, denotes the solution to (4.5). In this way,

one can qualitatively get an idea of the compromise between the minimization of these two

quantities. The scheme for determining the "optimal" regularization parameter consists of

finding those values of a such that (llK(g_)-rill, IIRg-.]l) lies in the "corner" of the resulting

curve, known as the L-curve. The use of this technique for determining suitable choices for

the regularization parameter is demonstrated in the examples.

In all four examples, the data was sampled on a regular grid {(zp, t+)} C (0,1) × (0,2].

Nineteen equally spaced points zp = pAz, Ax = .05, were taken in space and four equally

spaced temporal points t_ = qAt, At = .5, were taken for a total of n = 76 data points. In

all examples, the ms × 1 initial vector go = [.5, .5, .5,..., .5, .5, .5]r was used.

Finally, it should be noted that in the examples, the symbol a is used to denote both

the regularization parameter and the sinc decay parameter. The use of this symbol for both

quantities is well established in the literature and is thus difficult to avoid in this setting.

It should be obvious from the context however, which quantity is being discussed and there

should be no ambiguity resulting from the dual use of this symbol.

Example 5.1.

O_u 0_ ( 02u)at---T + _ EI(_)-_ = f(_,t), t > O 0 < _ < 1

t>o

Ou "0 Ou
t>o

OUzo-
u(z,O) = -ff_( , )=0, 0_<z_<l

The forcing function f(z, t) is consistent with the true stiffness parameter El(z) = 1+sin(_rx)

and the state solution u(x, t) = z(1 - x)sin(47rx)t2e -t. For these functions, the choices

a = ,3 - 3' = ] and _ = 1 satisfy the decay condition (3.17). No noise was added so

the data consisted of direct measurements of the state solution. For varying values of the

regularization parameter a, the L-curve is plotted in Figure 3. Note that the value a = 10 -s

yields a point (I[K(¢_) - rill , IIa_ll) in the "corner" of the curve. The uniform errors for

a = 10 -s are reported in Table 1 with the first four columns indicating the index limits
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for the expansion of the state variable and the fifth column indicating the number of basis

functions used in the expansion of EI,,, m. The convergence of the method is demonstrated

both by the results in the last column of Table 1 and by Figure 4 which shows the true and

approximate stiffness parameters with a = 10 -s.

M. Nz Mt Nt mF_ IIEIv(l)ll

8 8 8 4 17 .1869 - 0

16 16 16 6 33 .2482-1

24 24 24 7 49 .1463-2

Table 1. Errors on the Uniform Grid U with a = 10 -s in Example 5.1.
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Figure 3. The Tikhonov L-Curve for Example 5.1.
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Figure 4. True and Approximate StiffnessParameters for Example 5.1 with a = i0-s

-. - (mE = 17), - - - (mE = 33), ... (rob = 49), -- (True).

Ezaraple 5.2.

In thisexample, the trueparameter and statesolutionare the same as those in Example 5.1,

and hence El(z) = 1 + sin(_rz) and u(z,t) = z(1 - z) sin(47rz)t'e-t. To the data however,

we added a pseudo-random noise vector e from a Oaussian distribution with mean 0 and

standard deviation a chosen so that the noise-to-signal ratio a/Hd H = .01 ; that is, noise

= 1% of the signal. The L-curve is plotted in Figure 5. Note that the values a = 10 -5 and

a = 5 × 10 -s yield points (IIK(_.)- rill, IIR_'_.II) in the "corner" of the curve. For rng = 33,

the uniform errors obtained with a = 10 -3, a = 10 -s and a = 10 -l° are given in Table 2.

Corresponding plots of the true and approximate stiffness parameters are shown in Figure 6.

Note that the "corner" value a = 10 -s provides a very good choice for the regularization

parameter whereas a = 10 -l° is not large enough to damp out the error contributions due
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to the smaller singular values. Finally, the choice a = 10 -3 causes too much smoothing and

information about the parameter is lost. The results from this example demonstrate the

viability of the method for problems with noisy data.

IIE (l)ll

-" 10 -s a = 10 -s a - 10 -1°

.8503 - 0 .2228 - 1 .3840 - I

Table 2. Errors on the Uniform Grid U with ms = 33 in Example 5.1.
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Figure 5. The Tikhonov L-Curve for Example 5.2.
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Figure 6. True and Approximate Stiffness Parameters for Example 5.2 with ms = 33

-.-(a=10-3), ---C a=10-5), ..-(a=lO-'°), --(True).

Example 5.3.

a_u 02( 02u)09----T+_ EZ(=)_-i-x2 =f(w,_), _>0 0<=<1

_(0,0 = _(1,0 = 0, _>0

8U o t Ou t) O, t > O_(, )= _(1, =

(gU'x 0"
_(x,0)=_[ , )=0, 0<=<l

In this example the stiffness parameter to be recovered is the shifted Oaussian function

EI(=) = 1 + !_-4o(=-_)'. The state solution u(=, _) = sinS(r=)t_e -' yields the decay param-4-

eters a = fl = "),= 3 and 6 = 1 as dictated by (3.17). Pseudo-random noise is again added

to the data in the manner described in the last example. As seen in Figure 7, the Tikhonov

parameter values a = 10 -6 through a = 5 x 10 -s yield points (IlK(g,,)- dH, ][R6'a]l)

in the "corner" of the L-curve. For the "corner" value a = 10 -7, numerical results with
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mE = 17, mE = 33 and mE = 49 are reported in Table 3 and Figure 8. In spite of the noise

in the data, both sets of results demonstrate that the method converges as the number of

basis functions is increased.

M,, N,_ M, N, mE IIEIu(t)ll

8 8 8 4 17 .1811 -0

16 16 16 6 33 .4191 - 1

24 24 24 7 49 .1058-1

Table 3. Errors on the Uniform Grid U with a = 10 -r in Example 5.3.
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Figure 7. The Tikhonov L-Curve for Example 5.3.
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Figure 8. True and Approximate Stiffness Parameters for Example 5.3 with a - 10 -7

-.-(mE=33), ---(mE=49), _(True).

Example 5.4.

ot--r+ _ m(x)o_2] =/(x, t), t > o o < • < t

( °'_') (l, t) = 0, t>0u(0,0 = 0, ZI'_'_z 2

( °'_)(1,0=8:::', t>0.ff_x(O,Out) = t_ e -t, _0 EI._x2

Ou'm O"
u(z,O)=_/.(, )=0, O_<x_<l.

This example demonstrates the Sinc-Oalerkin method for a problem with cantilever boundary

conditions and hence the stiffness parameter appears both in the spatial operator and in the

boundary conditions themselves. The true stiffness parameter is EI(x) = 1 +sin(z,x) and the

s_state solution is u(x, t) = sin3(rx)t_e -'. For these functions, the choices a =/3 = 1,-y = u

and 6 = 1 satisfy the decay condition (3.41). No noise was added so the data consisted

of direct measurements of the state solution. Since the L-curve was very similar to that of
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Example 5.1, the regularization parameter was taken to be a = 10 -8. The uniform errors

for this choice are reported in Table 4 and the true and approximate parameters are shown

in Figure 9. When comparing Tables 4 and 1, it is noted that the index limits differ as a

result of the choice ct = fl = 1 for the decay parameters. The smaller values of a and/9 also

indicate why the errors here are slightly larger than those in Example 5.1. Finally, because

Ms = M® + 2 and Ns = N, + 2 for these boundary conditions, the number of basis functions,

ms, used in the expansion of EI_ B also differs from the number used in Example 5.1 where

Ms = M, and Ns = N,. Both the table and the figure demonstrate the convergence of the

method for problems with cantilever boundary conditions.

M= N_ M, N, ms IIEIu(OII

8 8 6 3 21 .1589 - 0

16 16 11 4 37 .2589- 1

24 24 16 6 53 .1334-1

Table 4. Errors on the Uniform Grid U with ot = 10 -s in Example 5.4.

2.2
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!.6
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1.2

o.... ........ ...

"\

0'@0 0.1 2 0.3 0.5 O.fi 0.7 O.B 0.9
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Figure 9. True and Approximate Stiffness Parameters for Example 5.4 with a = 10 -s

-.-(ms=21), ---(ms=37), ...(ms=53), _(True).
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